- egenskaper
- Första ordningens filter
- Lågpassfilter
- Högpassfilter
- Andra ordning filter
- tillämpningar
- referenser
Aktiva filter är de som har kontrollerade källor eller aktiva element, såsom operationsförstärkare, transistorer eller vakuumrör. Genom en elektronisk krets gör det möjligt för ett filter att utföra modellering av en överföringsfunktion som ändrar insignalen och ger en utsignal enligt designen.
Konfigurationen av ett elektroniskt filter är vanligtvis selektivt och urvalskriteriet är insignalens frekvens. Beroende på ovanstående, beroende på typ av krets (i serie eller parallellt), tillåter filtret passering av vissa signaler och kommer att blockera passagen för resten.
På detta sätt kommer utsignalen att kännetecknas av att förfinas i enlighet med designparametrarna för kretsen som utgör filtret.
egenskaper
- Aktiva filter är analoga filter, vilket innebär att de modifierar en analog signal (ingång) som en funktion av frekvenskomponenterna.
- Tack vare närvaron av aktiva komponenter (driftsförstärkare, vakuumrör, transistorer etc.) ökar denna typ av filter en sektion eller hela utsignalen, med avseende på insignalen.
Detta beror på effektförstärkningen med användning av operativa förstärkare (OPAMS). Detta gör det lättare att få resonans och en högkvalitetsfaktor utan att behöva använda induktorer. Kvalitetsfaktorn - även känd som Q-faktorn - är en mått på resonansens skärpa och effektivitet.
- Aktiva filter kan kombinera aktiva och passiva komponenter. De senare är de grundläggande komponenterna i kretsar: motstånd, kondensatorer och induktorer.
- Aktiva filter tillåter kaskadanslutningar, är konfigurerade för att förstärka signaler och möjliggöra integration mellan två eller flera kretsar om det behövs.
- Om kretsen har driftsförstärkare begränsas utgångsspänningen från kretsen av mättningsspänningen för dessa element.
- Beroende på typ av krets och betyg för de aktiva och passiva elementen, kan det aktiva filtret utformas för att ge en hög ingångsimpedans och en liten utgångsimpedans.
- Tillverkningen av aktiva filter är ekonomisk jämfört med andra typer av enheter.
- För att använda aktiva filter krävs en strömförsörjning, helst symmetrisk.
Första ordningens filter
Första ordningens filter används för att dämpa signaler som ligger över eller under graden av avslag, i multiplar om 6 decibel varje gång frekvensen fördubblas. Denna typ av installation representeras vanligtvis av följande överföringsfunktion:
När vi bryter ned tecknaren och nämnaren för uttrycket har vi:
- N (jω) är ett polynom av grad ≤ 1
- t är det inversa av filtrets vinkelfrekvens
- W c är vinkelfrekvensen hos filtret, och ges av följande ekvation:
I detta uttryck f c är gränsfrekvensen för filtret.
Avstängningsfrekvensen är gränsfrekvensen för filtret för vilket en dämpning av signalen induceras. Beroende på filterkonfigurationen (lågpass, högpass, bandpass eller eliminering av band) presenteras effekten av filterkonstruktionen exakt från cutoff-frekvensen.
I det specifika fallet med första ordningsfilter kan dessa endast vara lågpass eller högpass.
Lågpassfilter
Denna typ av filter tillåter de lägre frekvenserna att passera genom, och dämpar eller undertrycker frekvenser över cutoff-frekvensen.
Överföringsfunktionen för lågpassfiltren är som följer:
Amplituden och fasresponsen för denna överföringsfunktion är:
Ett aktivt lågpassfilter kan uppfylla designfunktionen med ingångs- och jordmotstånd, tillsammans med op-förstärkare och parallella kondensator- och motståndskonfigurationer. Nedan visas ett exempel på en aktiv lågpassomvandlare-krets:
Parametrarna för överföringsfunktionen för denna krets är:
Högpassfilter
För sin del har högpassfilter motsatt effekt jämfört med lågpassfilter. Med andra ord dämpar denna typ av filter de låga frekvenserna och låter de höga frekvenserna passera.
Även beroende på kretskonfiguration kan aktiva högpassfilter förstärka signalerna om de har operativa förstärkare som är speciellt anordnade för detta ändamål. Överföringsfunktionen för ett första ordning aktivt högpassfilter är följande:
Systemets amplitud och fasrespons är:
Ett aktivt högpassfilter använder motstånd och kondensatorer i serie vid kretsens ingång, liksom ett motstånd i urladdningsvägen till marken, för att tjäna som en återkopplingsimpedans. Här är ett exempel på en aktiv högpassomvandlare-krets:
Parametrarna för överföringsfunktionen för denna krets är:
Andra ordning filter
Andra ordning filter erhålls vanligtvis genom att göra första ordning filteranslutningar i serie för att erhålla en mer komplex enhet som gör det möjligt att selektivt ställa in frekvenser.
Det allmänna uttrycket för överföringsfunktionen för ett andra ordningsfilter är:
När vi bryter ned tecknaren och nämnaren för uttrycket har vi:
- N (jω) är ett polynom av grad ≤ 2.
- W o är vinkelfrekvensen hos filtret, och ges av följande ekvation:
I denna ekvation f o är den karakteristiska frekvensen hos filtret. I fallet med en RLC-krets (motstånd, induktor och kondensator i serie) matchar den karakteristiska frekvensen för filtret filtrets resonansfrekvens.
I sin tur är resonansfrekvensen den frekvens vid vilken systemet når sin maximala svängningsgrad.
- ζ är dämpningsfaktorn. Denna faktor definierar systemets förmåga att dämpa insignalen.
I sin tur, från dämpningsfaktorn, erhålles filterkvalitetsfaktorn genom följande uttryck:
Beroende på utformningen av kretsimpedanserna kan de andra ordningens aktiva filter vara: lågpassfilter, högpassfilter och bandpassfilter.
tillämpningar
Aktiva filter används i elektriska nätverk för att minska störningar i nätverket på grund av anslutning av icke-linjära belastningar.
Dessa störningar kan genomsyras genom att kombinera aktiva och passiva filter och varierande ingångsimpedanser och RC-inställningar under hela monteringen.
I elektriska kraftnät används aktiva filter för att minska harmonisk ström som cirkulerar genom nätverket mellan det aktiva filtret och den elektriska kraftproduktionsnoden.
På samma sätt hjälper de aktiva filtren att balansera returströmmarna som cirkulerar genom neutralen, och de övertoner som är förknippade med detta strömflöde och systemspänningen.
Dessutom spelar aktiva filter en utmärkt roll för att korrigera effektfaktorn för sammankopplade elektriska system.
referenser
- Aktiva filter (sf). National Experimental University of Táchira. Táchira-staten, Venezuela. Återställs från: unet.edu.ve
- Lamich, M. (2001). Aktiva filter: Introduktion och applikationer. Universitat Politècnica de Catalunya, Spanien. Återställd från: crit.upc.edu
- Miyara, F. (2004). Aktiva filter. National University of Rosario. Argentina. Återställd från: fceia.unr.edu.ar
- Gimenez, M (sf). Kretsteori II. Simon Bolivar universitet. Miranda State, Venezuela. Återställs från: labc.usb.ve
- Wikipedia, The Free Encyclopedia (2017). Aktivt filter. Återställd från: es.wikipedia.org
- Wikipedia, The Free Encyclopedia (2017). Elektroniskt filter. Återställd från: es.wikipedia.org